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ON THE USE OF ALGFEBRAIC METHODS IN THE ANATYSIS AND
DESIGN OF MODEL-FOLLOWING CONTROL SYSTEMS
By Heinz Erzberger

Ames Research Center

SUMMARY

This study gives an analysis of and offers design criteria for three con-
figurations of model following. The three configurations studied are real
model following, implicit model following or matching dynamics, and real model
following with command inputs. It is assumed that model and plant are
described by linear vector differential equations where the equations of the
model may be of lower order than those of the plant. Algebraic tests are
developed to determine under what conditions a feedback law exists that per-
mits perfect following of the model by the closed-loop plant. The same set of
tests is shown to be applicable to both real and implicit model following.
This leads to the conclusion that real and implicit model following, although
physically different, are mathematically equivalent if no unknown state distur-
bances or parameter variations occur during the control interval. However,
the condition for perfect following with command inputs to the model contains
an additional test not present in the first two configurations. If perfect
following has been shown to be possible, the control law that achieves it is
calculated for the implicit model-following configuration. In the general
case, this control law must generate both finite and impulse controls if the
model is of lower order than the plant. A simple method of approximating the
impulse control law to arbitrary accuracy is also given. The theory is
illustrated with three examples, two of which are based on the lateral equation
of motion of an aircraft.

INTRODUCTION

A model-following control system comprises two main components, the plant
and the model. For instance, the plant is represented by the equations of
motion of a particular aircraft and the model by the equations of motion of
another aircraft having some especially desirable flight characteristic or
handling quality. This paper is not concerned with the problem of selecting a
model, but assumes at the outset that a model has already been specified. In
the most general terms, the designer of a model-following control system is
faced with the following problem: Given the differential equations describing
the plant and the model, choose a feedback law around the plant so that the
output variasbles of the plant, as a function of time, will faithfully follow
the output variables of the model.

Recently, Ellert and Merriam (ref. 1) and Tyler (ref. 2) used quadratic
optimal control to synthesize model-following control systems. Their



technique, unlike those based on classical procedures, is applicable to arbi-
trary multivariable systems and always yields a feedback configuration that
minimizes a quadratic function of the error between the plant output and the

model.

Although the application of optimal control theory to the synthesis of
model-following systems was a great step forward, experience has brought to
light some additional design problems for which the methods of optimal control
alone prove computationally inefficient and conceptually unenlightening. An
example of such a problem is that of deciding when the closed-loop plant can
follow the model perfectly. That is, for a particular combination of plant
and model, one may find that the closed-loop plant designed by the methods of
optimal control follows the model with unacceptably large errors that cannot be
reduced below some limiting value merely by manipulating the weight matrices
in the cost function. Stated in another way, in a particular problem there
may not be enough degrees of freedom in selecting the feedback matrix to match
the plant to the model if the model dynamics differ greatly from the plant
dynamics. In this case, as always, the feedback matrix calculated via optimal
control still yields a weighted least-squares match between model and plant
response during the control period, but gives no prior indication of matching
accuracy, which must be determined separately either by actually checking the
response of the closed-loop system or by evaluating the minimum cost.

Another problem that optimal control can solve only indirectly is that of
deciding if the requirement of perfect matching of plant and model response
entails a feedback matrix, some or all of whose elements asymptotically
approach infinity. To answer this question by optimal control, one observes
the elements of the optimum feedback matrix in response to a stepwise reduc-
tion of the weight on the control vector in the quadratic cost function until
a conclusion about the asymptotic behavior of the elements can be drawn.
Despite its obvious inefficiency, this procedure, based on repeated
calculations of optimum feedback matrices, currently offers the only general

approach to this gquestion.

Finally, there i1s the dilemma of choosing between a design based on a
"model in the system" (real model) and the so-called "model in the performance
index" (implicit model). From the standpoint of mechanization, the essential
difference between these two designs is that the former requires real-time
comparison of model states and plant output, implying simulation of the model
within the system, whereas the latter does not. But the relative merits of
these two design approaches are not entirely clarified in the literature,
although Tyler (ref. 2) has shed some light on this question.

Mainly, this paper concerns the development of a sequence of algebraic
tests applicable to both implicit and real model following for checking
whether a plant can follow a model without error. The first test of the
sequence answers the question of whether there exists a finite control func-
tion for perfect following of a given plant and model. Failure of this test
leads to the application of the second test in the sequence, which establishes
if perfect following is possible when both finite and delta funection controls
are permitted, or to the termination of the testing procedure and the
conclusion that no controls, neither finite nor delta functions, can achieve
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perfect following. If perfect following is not achieved at the end of the
second test, the same two options as at the end of the first test reoccur.
That is, failure of the second test uniquely leads either to a third test
enlarged to include derivatives of delta functions or to termination of the
testing sequence. In the most general case, the testing may continue until
n-2 derivatives of delta functions have been included, where n 1is the order
of the plant. The control law that achieves perfect following of model and
plant is obtained as a by-product of these tests for implicit model following.

Finally, the greater understanding of the model-following theory, exem-
plified, in particular, by the conditions for perfect following being identical
for both implicit and real model following, leads to a rational criterion for
choosing between the two design alternatives.

Conditions for perfect following are also derived for real model following
with command inputs to the model. Two conditions for perfect following are
obtained, the first is the same as before and the second is unique to this
configuration.

The paper concludes with the discussion of three examples. The first,
based on the lateral equations of motion of an aircraft, compares the perfor-
mance of implicit and real model-following designs under various operating

conditions. The second and third examples were chosen primarily to illustrate
the theory when unbounded controls are required for perfect matching.

SYMBOLS
Capital letters such as F, B, H denote matrices whose dimensions are
defined in the text. The exceptions to this rule are
I unity matrix
J loss function

K gain constant defined in the text

Small letters denote state, output, or control variables.

At transpose of A

AJr pseudoinverse of A (also known as generalized inverse)
L7t inverse Laplace transform

n(A) null space of A

ﬁKA)l perpendicular complement of T(A)

R(A) range of matrix A



ﬁt(A)'L perpendicular complement of R(A)

5 identical with X
€ either a small number or the logical statement "is a member of,"

depending on context
5(t-T) delta function at + =T
89(t-1)  (j-1)th derivative of delta function
¥Y¥cao set ¥ 1is contained in set 0

¥Y¥Nneo logical intersection of sets ¥ and
IMPLICIT MODEL FOLLOWING

In implicit model following, the output dynamics of the plant are modified
by means of feedback to approximate the dynamics of a given model. Instead of
minimizing the error between plant output and model states directly, implicit
model following imposes a somewhat weaker condition which is stated in mathe-
matical terms as follows. Let the multivariable plant be described by

il

Fx + Bu (1)

Hx (2)

%

Y

where X 1is an n-dimensional state vector, u an m-dimensional control vec-
tor, and y an I-dimensional output vector. The matrices F, B, and H do
not depend on time and have dimensions nXn, nXm, and IXn, respectively. Also,
it is assumed that n 2z mand n = 1. The mathematical description of the
model is taken to be

Il

7 = Lg

(3)

I

L X1 constant matrix

where =z denotes the I-dimensional state vector of the model. The objective
of implicit model following is to find a feedback law u = Sx +to be placed
around the plant so that the output y approximates

¥y =Ly (&)

as closely as possible over some specified time interval. One technigue for
achieving this dbjective is to use optimal control to calculate the control
law that minimizes the following quadratic loss function (refs. 3 and 4):



T
J = \/p [( - Ly)'Q(y - Ly) + u'Ruldt
O

where Q 1is a positive semidefinite and R, a positive definite matrix. This
formulation of model following does not introduce the state variables of the
model directly, since y and y appearing in the loss function can be expressed
by means of equations (1) and (2) in terms of x and u alone. Hence, the
terms "implicit model," "model in the performance index" (ref. 2), and "match-
ing dynamics" (ref. 5) have all been used to describe this method. Figure 1
illustrates the absence of dynamic coupling between model states and the
closed-loop plant characteristic of this configuration.

We now address ourselves to
Modei ®z the main problem of this paper,
namely, that of determining under
what conditions plant and model
can be matched exactly. In
essence, this problem is equivalent
LN Plant X H e y U0 determining whether or not the
F.,8 elements of the feedback matrix S
offer the designer enough freedom
of choice so that he can force the
output of the closed-loop plant to
satisfy equation (U4) exactly.
This questicn suggests that alge-
braic methods might provide a con-
Figure 1.- Implicit model following. venient framework for its solution.
Using equations (1) and (2) and
requiring that equation (4) be a strict equality permits us to write

Feedback
matrix S

HBu = (LH - HF)x (5)
If a control wu corresponding to any x in the state space is to exist so
that equation (5) is satisfied, then the range of HB must contain the range
of (LH - HF):
R(HB) > R(LH - HF) (6)

To derive an algebraic condition equivalent to condition (6), equation (5) is
formally solved for u by taking the pseudoinverse of HB (ref. 6

uw = (m)(E - 7)x (7)

Then, after u 1s eliminated from equations (5) and (7), the condition for
perfect matching becomes

[(m)(m)T - I}(1E - )x = 0  all x (8)
To justify the use of the pseudoinverse, one must show that if equation (8) is

true for all x, that is, [(HB)(HB)t - I](LH - HF) is the zero transformstion,
then condition (6) is a necessary consequence. A property of the pseudoinverse
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that permits this conclusion is the fact that (HB)(HB)T is an orthogonal pro-
Jjection operator on R(HB). For the proof, let =z be any vector in
R(1LH - HF) and write it as the sum

z = 2o + 2z,

where

2oeR(HB)  and  z,eR(HB)®

since [(m)(m)T - 1] is also an orthogonal projection that projects every
zeR(LHE - HF) on R(HB)' and since, by assumption, equation (8) is zero for
every x, it follows that

z = 7o
and, therefore, R(LH - HF) c R(HB). Thus, we conclude that choosing

u = (m)f(E - I)x (9)

when

[(eB)(mB)" - 1)(1m - w¥) = 0 (10)

guarantees that y = Ly, or, equivalently, that the output dynamics of the
closed-loop system will match the desired output dynamics. Furthermore, the
boundedness of the pseudoinverse implies that the feedback law (HB)T(LH - HF)
is bounded. Therefore, if the condition for zero error (eq. (10)) is
satisfied and the model is stable, the controls that achieve a perfect match
are always bounded.

This proves the sufficiency of equation (10) for perfect matching with
bounded controls. The necesgssity of this equation follows from a similar argu-
ment. For if equation (10) is not the zero transformation, then any x such

that
[(mB)(m)" - 1)(1E - HF)x # 0

must necessarily yield a z = z5 + z; Wwhere z) % 0. Since this z; 1is not
within the range of HB, it follows that no u exists which can satisfy

equation (5) for that particular choice of x.

When equation (10) is not satisfied, it may still be possible to achieve
zero error by enlarging the class of controls to include delta functions. As
the next step, the control law and test for perfect matching derived above is
extended to the case of unbounded controls. One begins by writing every
control as a direct sum of ordinary and delta (impulse) functions:

il



u(t,t) = ui(t) + ug(r)d(t - ) (11)
uieR(HB)*
u5€m(HB)

where N denotes null space, L the perpendicular complement, T a running
variable, and +t current time assumed to be fixed. Thus, the delta function
occurs at time +t. The strength of the delta function, us, is restricted to
lie in the null space of HB; otherwise the left side of equation (5) would
contain an impulse of strength HBus while the right side would not. Hence,
perfect matching would be absent at the moment the impulse occurred.

Tt is shown in appendix A that at time +t%, a moment after the impulse
has occurred, the derivative of the output F(t¥) is as follows:

F(+1) = HFx + HBui(t) + HFBug(t) (12)

Our objective is to make the right side of equation (12) equal to ILHx(t) by
appropriately choosing ui(t) and ug(t):

HBui(t) + HFBug(t) = (LEH - HF)x(t) (13)

Before equation (13) can be solved explicitly for the control functions, it is
necessary to introduce an auxiliary variable U = u; + ug and write u; and
ug, by means of the pseudoinverse, as projections of U on HB)™ and R(IB),
respectively:

wy = ()T (EB)E , us = [T - (m)TmId (14)

Then, after substituting equations (14) into equation (13), one may solve
explicitly for wu:

3 = MN(1E - °HF)x (15)
where
M= + HB[I - (m)Tm]

Finally, the condition for perfect matching can now be derived by replacing
uy and ug 1in equation (13) with the relationship for these quantities
obtained from equations (14) and (15):

o - 1)(1E - 7F) = 0 (16)

If condition (16) is satigfied, then equation (15) essentially gives the
control law that achieves perfect matching, except that the problem of gener-
ating a delta function control has not yet been considered. Assuming for the
moment that it is possible to generate the required delta function, we want to
demonstrate that from time +t+ onward the equality of equation (4) can be
maintained. In general, equation (4) or (5) will not be equal at time +t
since the effect of the delta function is not felt until time t+, an



infinitesimal instant later than +t. At that moment a step change occurs in
¥ in such a way that equation (4) becomes an equality. Perfect matching is
therefore assured for at least a time interval that is short in comparison to
the fastest time constants of the system. As soon as the difference between
v and Ly exceeds gome small threshold, where the value of the threshold may
be chosen arbitrarily small, another impulse whose weight is chosen according
to equations (14) and (15) is applied. The second impulse reestablishes the
equality of equation (4). Clearly, perfect matching can thus be maintained
indefinitely by applying impulses whenever the threshold value is exceeded.
We also note that the smaller the threshold value, the closer will be the
spacing of the impulses, but also the smaller will be the strength of the
impulses.

The problem of implementing a closed-loop controel law that generates the
required delta functions is discussed in appendix B where it is shown that an
approximate synthesis of such a control law is obtained by multiplying ug by
a large positive gain constant K and that the approximation to the ideal
delta function control law improves in proportion to the magnitude of K.

If equation (16) is not satisfied and the rank of M is not maximal, it
may still be possible to achieve perfect matching by including derivatives of
delta functions in addition to the previously used controls. The derivation
in this case will be indicated only briefly since the arguments remain essen-
+tially the same as before. The contrcl u is now written as the sum of three

controls:
u = uy + u66(t - T) + ual(t - T)

weln(m)]*
ug eN(EB) N [w(HEFB)]1*
ug 1EM(HB) N N(HFB)

This decomposition insures that delta functions and their derivatives do not
appear in the expression for v, which becomes, according to appendix A,

7 = HFx + HBuy + HFBug + HF“Bug1 (17)

At this point, the right side of y 1is equated to LHx and the condition is
found that describes when the resulting equation has a solution u for all x
in the state space. TFundamentally, the procedure for deriving this condition
is similar to the previously treated case of finite and delta function con-
trols. One begins by defining u = ui + ug + ug1 and then writing the three
components of u as orthogonal projections of i on the appropriate
subspaces:

uy = Plﬁ » 1,16 = Pafi ’ U‘Sl = Palﬁ (18)

whereupon equations (18) are used to write equation (17) in terms of U alone.
From that point the derivation is exactly the same as before, and the condi-
tion for perfect matching can again be put in the form given by equation (16),
except that M must be taken as M = HB + HFBPs + HEZBPal. For general

8




vector controls, the construction of the projections may be computationally
somewhat lengthier than before, but for scalar controls explicit formulas can
still be given:

p= () m, B=II-@m , &, -=I1- (@I - (s) s

It may be verified that for this special case of scalar controls, at most one
of the three projections is nonzero. If all three are zero, one may proceed
t0o higher order delta functions by obvious extensions of the theory. In the
general case of vector controls, the end of the testing sequence is reached
either when the (n-2)th derivative of delta functions is included or when the
intersection of the null spaces N(HB), M(HFB), . . . , N(HFIB) becomes empty
for some Jj < n-2.

REAI, MODEL FOLLOWING

In the implicit model-following design, only the model parameters were
considered in the selection of the feedback matrix; the model states them-
selves were not needed. In real model following, the model states must be
generated because here we ask for a feedback law S and a feedforward law A
so that the response of the closed-loop system x = Fx + BSx + BAz is such
that y(t) ~ z(t) rather than ¥ ~ Ly as for implicit model following. Fig-
ure 2 with u, = O is a block diagram for this model-following configuration.

‘ %
u. Model z |-> Feedforward u Plant H ‘ y

L,B —pp{ matrix A F, B

Feedback
matrix S

Figure 2.- Real model following.

For general multivariable systems, optimal control theory again offers the
most efficient method of calculating the appropriate feedback and feedforward
matrices. A convenient choice for the loss function is

T
J = J; [(y - z)'Qly - z) + u'Rulat (19)

It is customary to reduce equation (19) to standard form by augmenting the
state equations of the plant with those of the model, thus forming the
augmented state equation:



where

Then one minimizes the completely equivalent logs function

T
J = JF (w'Qw + u'Ru)dt (20)
o v
where
| EqE  -E'Q
Q =
-QH Q

It has been shown that the feedback matrix which minimizes J of equation (19)
depends only on F, Q, and R and not on the model parameter L, whereas the
optimum feedforward matrix depends on both model and plant parameters (ref. 2).

On first sight, it might appear that having the model in the system and
using the states of the model in real time to control the plant through the
feedforward loop would greatly add to the power of the method in comparison to
implicit model following. Yet the two methods are equivalent in a certain
sense, as will now be demonstrated.

After this brief introduction to real model following, we now proceed
with the problem of deriving conditions for perfect following of plant and
model when the criterion is equality of y(t) and z(t) for all +t. The deri-
vation uses the fact that if all orders of time derivatives of y and z are
equal at time t = 0, then the error will be zero for all time. Beginning
with the zeroth derivative, one obtains

z(t) = Hx(t) (21)

at t = 0. This is merely an initial alinement condition of model and plant
states that can always be satisfied at the start of the control period. Next,
both sides of equation (21) are differentiated and then rewritten with the

help of equations (1), (2), (3), and (21) as
H(Fx + Bu + BAz) = H(Fx + Bu + BAHx) = LHx (22)

Here Az represents the feedforward control, but the explicit dependency of
this control on the model states 2z has been eliminated in the middlie member
of equation (22) by use of equation (21). Solving the last two members of
equation (22) for u, one obtains

u = () (LH - HF - HBAH)x (23)

The condition for equality of the first derivative is found by eliminating u
between equation (23) and the last two members of equation (22):

10
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[(m)(mB)t - T1(1H - #F) = O (24)

where the two terms arising from the feedforward control canceled by virtue of
the identity (HB)(HB)T(HB) = HB (ref. 6). But equation (24), if true, holds
for arbitrary +t; therefore, all higher order derivatives of the error will
also be zero. If condition (24) is not satisfied and HB does not have maxi-
mal rank, we can attempt to achieve perfect following by enlarging the class
of admissible controls to include various orders of delta functions. But the
procedure for doing this differs in no way from that for implicit model fol-
lowing and, moreover, yields identical results. Thus, the conditions for per-
fect dynamic matching are in every respect the same as for implicit model
following. Direct use of the model states in the feedforward loop neither
adds to nor subtracts from these conditions.

Real Model Following With Command Inputs

In some applications, the model receives command inputs from an external
source, such as a human operator. This is called "flying the model" and is
illustrated in figure 2. It is easy to extend the theory derived in the
preceding section to such a situation. The equation for the model is

z = Lz + ﬁuc (25)

where u, 1s the command input. The plant, the output equation, and the
objective, equation (21), remain as in real model following. Then, for per-
fect dynamic matching the alinement condition must be satisfied as before:

Hx(t) = z(t)

The control law for dynamic matching is obtained by requiring that the first
derivative of y and z De equal:

u(t) = (m)T(@E - 'F)x(t) + (m)Bu,(+) (26)
The feedforward control Az has been omitted from equation (26) since it was

previously shown to be irrelevant. The firgt derivatives of y and z will be
equal for all x and u, if

[(m)(m)T - 1117 - #F)x = [(m)(m)" - 118y, (27)

Since u, 1is independent of x, each side of equation (27) must be zero
separately:

o)

[(m)(m)F - 1)(1H - #F)
. (28)
[(m)(m)T - 118

o)

Equations (28) give the conditions for dynamic matching with command inputs to
the model. Here the second of equations (28) introduces a genuinely new
condition. Again the theory can be extended as needed to include delta
function controls.

11



EVALUATION OF REAL AND IMPLICIT MODEL FOLLOWING

It has been shown that the conditions for perfect matching and the control
law which achieves perfect matching are identical for both real and implicit
model following. Thus, if it is assumed that perfect matching is possible
with either bounded or unbounded controls and that unknown disturbances are
absent, there is no essential advantage of one design over the other. The key
issue in deciding between a real model-following design (with its additional
hardware requirements) and the simpler implicit model following is whether or 3
not the requirements of the problem dictate that a particular phase trajectory
of the model be followed in the presence of unknown disturbances in the plant.
Implicit model following is not capable of following a phase trajectory of the >
model where disturbances are present since no real-time error measgurement
between model and plant states takes place; the model following is open loop
as it were. But, if the model serves merely to characterize the desired
dynamic properties of the plant, in other words, if model and plant have sim-
ilar responses when starting at the same initial states with no disturbances
present, the implicit model following would be sufficient.

Maintaining alinement between plant and model in the presence of uncer-
tainties, be they unknown parameters or random disturbances, necessitates the
use of a real model in the system. With a model in the system, errors arising
between model and plant states due to uncertainties can be measured and cor-
rected continuously. Thus, the principal advantage of having a mcdel in the
system is not that it always achieves better following, but that it
desensitizes the following to unknown disturbances.

For real model following, the control law given by equation (23) cannot
be used by itself since it does not include the states of the model; that is,
this control provides dynamic matching only and does not attempt to realine
the plant and the model states 1if disturbances cause them to drift apart.
Here the techniques of optimal control would seem most appropriate for
computing the control law.

EXAMPLES

In this section three examples are presented. The first represents the
linearized lateral equations of motion of an aircraft. Three model-following
designs, one calculated by the theory developed in this paper and the other
two by the methods of quadratic optimal control, are compared, and the advan-
tages of each are pointed out. The second and third examples illustrate the
theory when unbounded conbrol laws are required for perfect matching. AIll
computations were performed with the automatic synthesis program of Kalman and

Englar (ref. 5).
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Example 1

The numerical values for both plant and model parameters were taken from
one of Tyler's examples (ref. 2). The plant actually describes the lateral
dynamics of the B-26 airplane which was used as a test bed for model-following
studies at Cornell Aeronautical Laboratory, whereas the model corresponds to
the lateral dynamics of some other airplane whose handling characteristics are
to be simulated on the B-26.

[0 1.0 0 0
0 -2.93 -4 75 -0.78
F =
0.086 0 -0.11 -1.0
_9 -0.042 2.59 -0.39
[0 1 0 o |
0 -1 -73.1kh 3.18
L:
0.086 0 -0.11 -1
_9.0086 0.086 8.95 -0.49
[ o o ]
0 -3.91
B =
0.035 0
| -2.53 0.3%_
é_ (bank angle)
¢ | (bank rate)
State vector =
B| (sideslip angle)
r (yaw rate)
8. | (rudder deflection)
Control vector =
Sa (aileron deflection)
H=1T

13



The test of perfect matching (eq. (8)) applied to this example gives

[0 0 0 0
-1.3x1077 -4.3x107® -1.1x107° -3.4x1078
[(mB)(mB)T - 11(1E - ) =
-1.2x107% -3.9x1073 -1.3x1072 -3.0x10°3
[-1.6x107®  -5.1x107°  -1.8x107*  -4.0x107% |

(29)

Thus, perfect matching is not possible because the right side of equation (29)
is not the zero transformation. ©Since HB has maximum rank, it also follows
from earlier work that delta function controls cannot improve this situation.
Nevertheless, because most entries in the matrix of equation (29) are small
compared with entries in the system and model matrices, it is interesting to
compare the performance of the simple model-following control law,

equation (7),

-3.4x10"3 -0.11 -0.37 -0.084

u = (HB)T(LH - HfM)x = x (30)
0 -0.49 17.5 -1.01

with those calculated by optimal control for both the implicit and real model-
following performance indices. For the implicit model-following case the
diagonal weight matrices Q and R selected for this calculation correspond to
those used by Tyler and appear to give a reasonable compromise in matching all
the state variables. The Q and R matrices entering into the real model-
following performance index were selected experimentally to give good follow-
ing of all model states. The numerical values for the Q, R, feedback, and
feedforward matrices corresponding to the two optimal control designs are

given below.

Implicit model following

Diagonal qQ = [0,6,0,6] Diagonal R = [1,1]
0.0034 0.111 0.371 0.0356
Feedback matrix = -
0 0. 494 -17.5 0.61k4
Real model following
Diagonal Q = [10,10,10,10] Diagonal R = [1,1]
~-0.074 -0.094 2.34 -3.23
Feedback matrix =
-3.15 -2.73 0.835 0.261

14
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0.031 -0.246 2,109 -4, 62
Feedforward matrix =

-3.02 -3.16 16.6 -2.3

Figures 3 and U4 compare the transient responses of the three different
control laws for two initial conditions corresponding to an initial bank angle
and an initial bank rate, but with the model and plant states alined at the
start. Because the response of the implicit model-following law calculated
with optimal control was generally not much different from the response
obtained with the control law of equation (30), it is not drawn on all the
figures in order to reduce crowding of the curves. Also, those state variable
time histories not included were found to be as well matched as ¢ in fig-
ure 3(a). It can be seen in figures 3 and %4 that at least during the first
5 seconds, the control law of equation (30) performs as well as the real
model-following design or better. This is particularly evident in the
responses of figures 3(b), 3(c), and 4(b), where the real model-following
design often shows considerable error between model and plant. Experimenta-
tion with the Q matrix did not measurably improve the matching. A probable
explanation of why the control law of equation (30) achieves better matching
of the transient response is suggested by the fact that optimal control
minimizes the square of the error over the entire control interval, which in

1.0
¢
K
(a)
o 1 | ] | | —— MODEL
o3 —--- CONTROL LAW OF EQUATION (30)
""" REAL MODEL FOLLOWING
02 (OPTIMAL CONTROL DESIGN)
—-— IMPLICIT MODEL FOLLOWING
ol (OPTIMAL CONTROL DESIGN)
B
o}
-0l 10
=02 ¢
.5
.2 [—
¢}
r .005
B
_l — 0
(c)
-2 | | | 1 1 _
o] ) 2 3 q 5 '0050
TIME, sec TIME, sec
Figure 3.- Transient responses pertaining to Figure 4.- Transient responses pertaining to
example 1: initial bank angle disturbances. example 1: initial roll rate disturbance.
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this case was essentially infinite. This would put primary emphasis on the
steady-state portion of the response and would deemphasize matching of the
transient response. The opposite is true of control law (30) which essen-
tially tries to minimize the norm of the error between time derivatives of
model and plant states at any given moment. This is due to a property of the
pseudoinverse (ref. 6). When model and plant are not too dissimilar, as shown
in this case by the results of the perfect following test (eg. (29)), one can
expect this procedure to work quite well; but for a greatly mismatched model
and plant, again as determined by the perfect following test, no assurance of
satigfactory operation can be given. This line of reasoning also explains why
the response of control law (30) approximates the implicit model-following
response obtained by optimal control, because both attempt to match the
derivatives of model and system states, although the latter does so over an

infinite time interval.

Slight discrepancies between the
MODEL transient responses of the real model-
— — _ SYSTEM following design calculated by Tyler
(ref. 2) and those calculated in this
SN = (qa) paper have been observed. The origin of
A sl L L ! the discrepancies has not been definitely

established, but it probably lies in
‘2( small differences between the parameters
used in the two studies.

G
(b) 3
r o A AN Figures 5(a) and 5(b) demonstrate

i N - when it is advantageous to use real model
following. Here a disturbance in the
I 2 3 4 5 plant is assumed to have caused a sudden
TIME, sec misalinement between the model and plant
bank-angle variables. Under this condi-
Figure 5.- The effect of initial bank misaline- tion, the real-time error measurement
?Zﬁo&iﬁwexj?tlﬁogeiixi Piafcltoindze?l model between model and plant, which is possi-
& ¥ conr shen- ble only with real model following,
facilitates the eventual realinement of
corresponding state variables. Thus, the model serves as a memory of a
particular trajectory in the presence of disturbances.

Example 2

A simple example is chosen deliberately so that the required computation
can be performed by hand. The plant, ocutput, and model parameters are

0 1 o}
F.__ B..__

0 0 1
H=1{1 0] L = -5
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Since HB = O, we conclude that finite controls will not be sufficient to
achieve perfect matching. But the perfect matching test based on the use of
delta function controls, equation (16), can be successful. Then, according to
appendix B, the control law that achieves perfect matching asymptotically as

K approaches infinity is

X1
u=K[-5 -1]

X2

A block diagram of the closed-loop system is shown in figure 6.

u X2 X

s

)

—(5)
&/

Figure 6.- Closed loop system of example 2.

Example 3

The open-loop plant equations of thils example are fourth order and differ
only slightly from those of example 1. The main difference lies in the model
which is only second order:

ol
l_l
e
o
o

[0 0|
0 -2.93 -4.75 0 1 1
F = B =
0.085 0 -0.11 -1.0 0 0
| 0 -0.,0k2 2.59 -0.39 | 0 1|
[0 1 o o o 1
H= L =
0 0 1 0 -2 -2
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Thus, the objective in this case is to make the essentially fourth-order plant
look like a simple second-order system through the appropriate use of feedback.

MODEL
——— K=5
——— K=o
———— K=20

INITIAL CONDITION

.
@
f

| 2 3 4 5
TIME, sec

Figure T.- The effect of K on the
transient response of example 3.

It can be shown that the test for perfect follow-
ing with finite controls (eq. (10)) applied to
this example fails; therefore it is necessary to
use the more general test given by equation (16),
which considers sums of finite and delta func-
tion controls. This latter test shows that per-
fect following is indeed possible with a control
law containing both finite and delta function
controls.

After the required calculations are per-
formed, the two parts of the control law are

0 1.465 2.875 0
uy = X
0 1.465 2.875 0
-0.086 -2 -1.89 1
U.8=' X
0.086 2 1.89 -1

As shown in appendix B, an approximate syn-
thesis of a control law containing delta func-
tions is obtained by multiplying ug by a large
positive constant K. The total control is then
given by the sum of the two components, with K
appearing as a parameter in the feedback matrix:

-0.086K 1.465-2k 2.875-1.89K K
u: X
0.086K 1.465+2K 2.875+1.89K -K

Figures T(a) and 7(b) demonstrate the con-
vergence properties of the control law as a
function of the gain constant XK.

CONCLUSIONS

Two basic approaches, each having its particular advantages and disadvan-

tages, exist for designing a model-following control system.

In the implicit

model-following method, the model enters only into the selection of the feed-
back law placed around the plant but does not become physically part of the

total system.

that its output behavior coincides with that of the model.

Thus, feedback is used to modify the dynamics of the plant so

This type of fol-

lowing therefore operates open loop with respect to the model since during the
control interval no real-time comparison of model states and plant output

18



takes place. The main advantages of this method are simplicity and low cost
of implementation because simulation of the model in the system is not
necessary.

If design specifications require that the model-following control system
be able to follow a specific phase trajectory of the model starting at a given
initial state while the plant is subject to unknown disturbances or parameter
changes, then real model following i1s the appropriate choice. Here the contin-
nous measurement of error between model states and plant output offers the
additional freedom of using this error, appropriately weighted, as a means of
alining the model and the plant. However, because the conditions for perfect
following are identical for both real and implicit model following, this addi-
tional freedom does not contribute to improved matching of the dynamics of
model and plant in comparison with implicit model following.

Although optimal control theory offers the most general method available
for the design of model-following systems, it 1s inefficient, because of the
computational effort required, for answering such preliminary design questions
as whether or not it is possible to match model and plant dynamics and, if so,
whether bounded or unbounded controls are required. The theory presented here
answers such questions directly by means of an algebraic test and, in addition,
furnishes, for implicit model following, a simply computed control law that
achieves perfect matching if known to be possible by the test. It is demon-
strated that even if perfect matching is not possible the performance of a
system using the simple control law may compare favorably with the performance
of systems designed via optimal control so long as the dynamics of model and
plant are not too dissimilar.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif. 94035, April 17, 1968
125-19-04-08-00-21
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APPENDIX A

CALCULATION OF OUTPUT DERIVATIVE FOR INPUTS

CONTAINING DELTA FUNCTIONS

The purpose of this appendix is to derive expressions for the derivative
of the output, 7(t), when the controls applied to the system contain various
orders of delta functions. For reasons discussed in the main body of this
report, not every possible combination of finite and delta function controls
need be considered here; rather, it is sufficient to let the control u(t) be
of the form

u(t,r) = u(t) + u66(t - T) + ualB(t - T) 4+ . ..+ ugn_gan_g

(t - 7)
(A1)

where N
u; en(HB)

u en(HB) N n(EmB)*
ug,€n(EB) N n(HFB) n m(HF28)*

Ugn-oM(EB) N . . . N REF “B) N A(HF B)

If, for the moment, one considers an arbitrary delta function
ﬁa(t,T) =5(t - T)HS(T) and a bounded control ul(t), then y(t) is written

y(t) = HFx(t) + Bui(t) + Bﬁa(T)S(t - 7)] (A2)

We are interested in calculating 7v(t ) where t+ designates, as is customary,
a time constant infinitesimally later than +t. It will now be shown that

7(t*) has the form
§(£%) = B{FLx(t) + Big (t)] + Bul(t)} (a3)

assuming ui1(t) and ug(t) are continuous functions of t. To prove this fact,
sketch (a) assumes that the Jjth state variable xj receives Us(7)8(t - 7)
through the distribution matrix B, whose components are designated by bik-
The action of the delta functlon causes the output of the jth integrator at
time +t+ to take the value (t+) = XJ(t) + b kuk (t). Similar reasoning
must be applied to the output of the remalnlng 1ntegrators, thus yielding

X =x+ Bug. This updated state vector X was used in deriving equation (A3).
Finally, the condition that u(T) = ug(T)en(HB) reduces equation (A2) to

y(t) = HFx(t) + HBui(t) (Ak)
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To remaining

m
b;, 0 B(t-
z ik ks(f) (t-7) integrators

k=1

F= [fii]

Sketch (a).

that is, the impulse at time % causes a step change in the derivative of 1y,
but the impulse itself has been prevented from appearing in .

If y is of the general form given by equation (Al), it is easy to
demonstrate that equation (A3) generalizes to

F(£*) = HFx(t) + Bua(t) + FBug(t) + . . . + Fn-LBuan_g(t)] (A5)
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APPENDIX B

APPROXIMATE SYNTHESIS OF FEEDBACK LAW

CONTAINING DELTA FUNCTIONS

In the derivation of conditions for perfect following, it was necessary
to include delta functions as permissible controls in order to achieve perfect
following. Whenever the model is of lower order than the plant, it may be
expeditious to sacrifice a part of the plant dymamics for better matching, and
in that case delta function controls are necessary. Important guestions arise
now as to the procedure for constructing a control law containing delta func-
tions and how to approximate one to arbitrary accuracy. Although the concept
behind the construction of such a control law is well known, its adaptation to
this problem requires some explanation. The procedure involved will be
illustrated on a controllable plant with scalar control.

Assume now that the perfect matching test developed earlier has been per-
formed and that the required control law for perfect matching is

uw = (mB)T(1E - #F)s(t - T)x (B1)

Equation (11) always reduces to equation (B1) if u is a scalar. The prinei-
pal conclusion of this appendix is that the control law given by equation (Bl)
can be approximated to arbitrary accuracy in a given time interval 0 <+t < T

by u = k(mB) T (1H - mF)x (B2)

where the positive constant K 1s chosen sufficiently large.

For the proof, let u(s) be a rational function of s with the denomina-
tor at least one degree higher than the numerator, and consider the output
x,(t) of the system shown in sketch (b). Then one can show that the output

_,
|
I
I
I
I
I
|
I
I
I
|
|
I
I
|
I
I
I

J

! I
|
Input I Output
(s) :%@ - —0——: Xn (s)

Sketch (b).- Canonical system for generating delta function controls.
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xn(t) of this system can be expressed as

P
x(t) = L7Hi(s) + x(0)e E2n)E 4 k(i 4 ap)e”Ean)t Z

J=1
where Rj is the residue of the jth pole of u(s).

A word of explanation on deriving equation (B3) is in order. One starts
with xn(t) obtained by standard transform methods:

xn(t) = L[Xn—“’)_n] . L[J_L}

s +K -a s + K -an

Then follows the crucial step of adding and subtracting L™ i(s) to the right-
hand side of the equation, whereupon routine algebraic manipulations yield the
form of xp(t) given in equation (B3). The purpose of writing xp(t) in this
way is to find an explicit expression for the error as a function of K
between the desired time response L 1u(s) and the actual time response, xn(t),
with the ultimate objective of showing that this error approaches zero as K
becomes infinite. With respect to equation (B3), this error, denoted by €
and consisting of all the terms on the right-hand side except the first one,

is seen to approach zero as K becomes infinite. That is, in any given time
interval O <t < T, the gain constant K can be chosen so large that

xn(t) = T"H(s) + € (Bk)
and € 1is arbitrarily small.

To relate this result to the case at hand, one muist show that the closed-
loop system

% = Fx + BK(HFB)T(1LHE - HF)x (BS)
has embedded within it subsystems of the type shown in sketech (b) at every

integrator to which B distributes the control wu. This is demonstrated by
the phase variable form of the open-loop plant given below (ref. 7):

o 1 o . . . o |xa] [0
0 0] 1 0] . . . . 0 . 0
x = + u  (B6)
0 0] . . 0] 1 . 0
a1 a0 * . M * an XI_)'_J Ll )
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In the basis which yields the above representation of the plant, the matrix H
must bave the form

hia hio . . . hin-a 0
. 0
H= (BT)
0
_];J.Zl hzn O_J

gsince HB = 0 because delta function controls are required for perfect match-
ing. Given equations (B6) and (BT), one computes for the gain matrix

(mB)t(1; - #F) = [ki, kop o . ., -1] (B8)

The -1 in the last entry of the gain matrix assures that the feedback gain
around the nth integrator is nonzero and negative. Hence, the flow diagram
around the nth integrator is of the form shown in sketch (b).

One final point must be considered. In the closed-loop case, the input,
u(s), to the nth integrator itself depends on the gain K through the feed-
back loop, while earlier U(s) was assumed to be independent of K. It is
therefore necessary in the closed-loo0p case to be sure that the poles and
residues of u(s) converge to finite values as K approaches infinity and
that the degree of the denominator of the limiting form of U(s) is greater
than the degree of the numerator. Sketch (¢) illustrates the problem for the

X|(S)

XQ Tk - ——a— » L
()

O
v

. fK\/u\( s) Feedback |F—— —— ——— 4
O/ motrix [T T T — =~

Sketch (e).- Block diagram for computing u(s).

§ssumed Phase-variable form of the system. Straightforward computation shows
4(s) has the form

8e) - 8L ey o 2208 (59)
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where fi1(s) and fo(s) are polynomials of at most (n-1)st degree. But xp(s)
can also be written as a function of u(s):

Kﬁ(s) Xn(o)
-+
s —ap +t+K 8 -ap + K

xa(s) = (B10)

After xp(s) is eliminated between equations (B9) and (B10), A(s) can be put
into the form:

A 1 £1(s)xn(0) f2(s)
= Bil
u(s) 1 fl(EfK l:sn(s - ap + K) sn ( )
s™s - ap + K)
The limiting form of {i(s) as K = © therefore becomes
A _ fZ(S)
a(s)1im = 58 - £,(8) (B12)

In both equation (Bll), which holds for finite K, and equation (Bl2) the
degree of the numerator is less than the degree of the denominator as required.

ATLTERNATE DISCUSSION OF APPROXIMATION FOR DELTA FUNCTION CONTROLS

A disadvantage of the preceding discussion concerning approximation of
delta function controls with large feedback gains is that it is difficult to
generalize to vector controls or to higher order delta functions. An alter-
nate approach that avoids this difficulty but necessitates the use of a piece-
wise constant control is now presented. To begin with, it is assumed that
perfect matching in the implicit model-following sense can be achieved with
controls containing finite, delta function, and derivative of delta function
components. These three components of u (eq. (18)) are repeated here for
convenience:

u; = Pil , ug= Pgll , ug, = Pyl (B13)
where U is defined as
i = MI(LE - HF)x = (HB + HFBPs + HF BPy,) (LE - HF)x (B14)

The next step is to divide time into equal increments AL, which are
chosen much shorter than the shortest time constant of the model and the plant.
The control applied to the plant remains constant throughout each time incre-
ment and is updated only at the beginning of a new increment. If the control
process is assumed to start at t = O, the first control applied to the plant
is chosen as

u(0) = [Pl + A—]% Py + (—Ai)—g Pal]M’f(LH - HF)x(0) (B15)
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We note that the gain constants multiplying those components of control that
require delta function and derivative of delta function are l/A$ and 2/(A¢)2,
respectively. Also, x(0) is arbitrary and therefore may be such that

y(0) # 1y(0).

This sets the stage for the crucial step of this approach, namely, the
computation of the error between JF and Ly at the end of the first time incre-
ment. Using the standard expression for the time response of a linear system

(ref. 6), we compute y(At):

AN
(o) = H{eFAtX(O) o [T T)Bu(T)dT} (B16)
o]
where the transition matrix eFt is given in terms of the infinite series as
2
eFt=I+Ft+Fsz+... (B17)

Substituting equation (B1l7) into (B16) and using the fact that u(t) is con-
stant within the integration interval yields

y(at) =H{x(o) + AtFx(0) + Ag—f x(0) + .

+ []A‘t + FA;’Z + FQ?.?C‘S + . . .:}Bu(O)} (B18)

The term y(At) is calculated to evaluate the error between v(At) and Ly(at)
and to show that it can be made arbitrarily small. The error, denoted by
n(At), is evaluated using equations (1), (2), (B15), and (B18):

i ° ° BP
EBPal + 1 5 +
+ (At)JM (LH - HF) +BI:P1 + 3% By t TAE Pal}M (LH - HF)  x(0)
2 > 3
- {LH ¢ ACLHF + S5 LHF? 4 L L L o LH<IAt + B FE?? >[BP1
BPs 2BP81 +
Sy M (LH - HF) - x(0) (819)
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Since HBP8 = 0, HBP61 = 0, and HFBP61 = 0, equation (B19) simplifies to

n(at) = (it - 1I)(1E - HF) + o(At) (B20)

where O(At) are terms that go to zero at least as fast as At. But the first
term 1s identically zero by the assumption that the perfect matching condition,
equation (16), is satisfied. Thus, if At is sufficiently small (or the gain
constants arbitrarily large), the error at the end of At seconds can be made
as small as desired for any initial condition.

Furthermore, the error can be maintained arbitrarily small for all future
time if the control, equation (B15), is updated at the beginning of each new
time increment by replacing x(nAt) with x[(n + 1)At]l, n being the number of
time increments.

Needless to say, through appropriate limiting arguments, the discussion
given here for a discrete time control law can be generalized to continuous
time control. The mathematical details, however, are tedious and are not
elaborated here.

27



28

REFERENCES

Ellert, F. J.; and Merriam, C. W., ITI: Synthesis of Feedback Controls
Using Optimization Theory - An Example. IEEE Trans. Automatic Control,
vol. AC-8, no. 2, April 1963, pp. 89-103.

Tyler, J. S., Jr.: The Characteristics of Model Following Systems as
Synthesized by Optimal Control. IEEE Trans. Automatic Control, vol. 9,

no. 4%, Oct. 1964, pp. L485-498.

Kalman, R. E.: Contributions to the Theory of Optimal Control. Boletin
de la Sociedad Matematica Mexicana, vol. 5, 1960, pp. 102-119.

Merriam, C. W., III: Optimization Theory and the Design of Feedback
Control Systems. McGraw-Hill Book Co., Inc., 196k.

Kalman, R. E.; and Englar, T. S.: A User's Manual for Automatic Synthesis
Program (Program C). NASA CR-475, 1966.

Zadeh, L. A.; and Desoer, C. A.: Linear System Theory. Ch. 11 and
appendix C, McGraw-Hill Book Co., Inc., 1963.

Tuenburger, David G.: Canonical Forms for Linear Multivariable Systems.

IEEE Trans. Automatic Control, vol. AC-12, no. 3, June 1967, pp. 290-293.

NASA-Langley, 1968 —— 19 A-2811



NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
WASHINGTON, D.C. 20546

N POSTAGE AND FEES PAID
NATIONAL AERONAUTICS AND
SPACE ADMINISTRATION

FIRST CLASS MAIL

OFFICIAL BUSINESS

04U 001 44 51 3DS 68168 00903
6IR FORCE WEAPONS LABORATCORY/AFWL/
KIRTLAMD AIR FORCE BASE, NEW MEXICC 8711

ATT MISS MADELINE £, CANOVA, CHIEF TECHR
LtIBRARY /FwWilt/

. If Undeliverable ( Section 158
POSTMASTER: Postal Manual) Do Not Return

“The aeronantical and space activities of the United States shall be
conducted 50 as to contribute . . . to the expansion of human knowl-
edge of phenomena in the atmosphere and space. The Administration
shall provide for the widest practicable and appropriate dissemination
of information concerning its activities and the results thereof.”

___NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and
technical information considered important,
complete, and a lasting contribution to existing
knowledge.

TECHNICAL NOTES: Information less broad
in scope but nevertheless of importance as a
contribution to existing knowledge.

TECHNICAL MEMORANDUMS:
Information receiving limited distribution
because of preliminary data, security classifica-
tion, or other reasons.

CONTRACTOR REPORTS: Scientific and
technical information generated under a NASA
contract or grant and considered an important
contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information
published in a foreign language considered
to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information
derived from or of value to NASA activities.
Publications include conference proceedings,
monographs, data compilations, handbooks,
sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION
PUBLICATIONS: Information on technology
used by NASA that may be of particular
interest in commercial and other non-aerospace
applications. Publications include Tech Briefs,
Technology Utilization Reports and Notes,
and Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Washington, D.C. 20546



